
    fit                         d dl Zd dlmZmZ dgZ ed           ed           ej        d          d
d	                                    ZdS )    N)not_implemented_forpy_random_stateaverage_clusteringdirected   approximate_average_clustering)name  c                 <  	 t          |           	d}t          |           }	fdt          |          D             D ]Y}t          | ||                            }t          |          dk     r1                    |d          \  }}|| |         v r|dz  }Z||z  S )u  Estimates the average clustering coefficient of G.

    The local clustering of each node in `G` is the fraction of triangles
    that actually exist over all possible triangles in its neighborhood.
    The average clustering coefficient of a graph `G` is the mean of
    local clusterings.

    This function finds an approximate average clustering coefficient
    for G by repeating `n` times (defined in `trials`) the following
    experiment: choose a node at random, choose two of its neighbors
    at random, and check if they are connected. The approximate
    coefficient is the fraction of triangles found over the number
    of trials [1]_.

    Parameters
    ----------
    G : NetworkX graph

    trials : integer
        Number of trials to perform (default 1000).

    seed : integer, random_state, or None (default)
        Indicator of random number generation state.
        See :ref:`Randomness<randomness>`.

    Returns
    -------
    c : float
        Approximated average clustering coefficient.

    Examples
    --------
    >>> from networkx.algorithms import approximation
    >>> G = nx.erdos_renyi_graph(10, 0.2, seed=10)
    >>> approximation.average_clustering(G, trials=1000, seed=10)
    0.214

    Raises
    ------
    NetworkXNotImplemented
        If G is directed.

    References
    ----------
    .. [1] Schank, Thomas, and Dorothea Wagner. Approximating clustering
       coefficient and transitivity. Universität Karlsruhe, Fakultät für
       Informatik, 2004.
       https://doi.org/10.5445/IR/1000001239

    r   c                 X    g | ]&}t                                          z            'S  )intrandom).0inseeds     /var/www/development/aibuddy-work/election-extract/venv/lib/python3.11/site-packages/networkx/algorithms/approximation/clustering_coefficient.py
<listcomp>z&average_clustering.<locals>.<listcomp>@   s.    <<<c$++--!#$$<<<    r      )lenlistrangesample)
Gtrialsr   	trianglesnodesr   nbrsuvr   s
     `      @r   r   r      s    l 	AAIGGE<<<<<eFmm<<<  AeAhK  t99q=={{4##1!99NIvr   )r
   N)networkxnxnetworkx.utilsr   r   __all___dispatchabler   r   r   r   <module>r(      s        ? ? ? ? ? ? ? ?
  Z  7888= = = 98  ! = = =r   